PhD Student Designs 3D Printable Wind Turbines to Bring Cheap Power to Remote Locations

When most people imagine wind turbines, they think of huge wind farms dominating the landscape with pristine, sleek, white towers, or perhaps instead think about old-fashioned windmills in an idyllic Dutch landscape. While there is a place for both these large-scale types of wind harvesting in the world, it’s well worth a look at smaller wind turbines as well, particularly those that could be used in remote locations.

These small installations could have a huge impact on communities relying on them for power — and this is exactly the stance one Canadian PhD candidate has in mind. Kyle Bassett, a student at the University of Windsor, has created a project called “A Small Turbine to Make a Big Difference,” and is pitching his plan for 3D printed wind turbines now for use in far-flung villages and other remote areas.

Bassett, who is familiar with the needs inherent in a small, remote community from the year-and-a-half he spent living in Venecia, Nicaragua. Life in Venecia looked to be beautiful…unless you wanted to use electricity. As so often has happened throughout human history, necessity was the mother of invention, and Bassett got to work designing a small-scale wind turbine that could function in any weather conditions to convert wind energy to storable power thanks to a generator that could turn the system into a direct USB charging station or could charge up a lithium-polymer (LiPo) battery pack for portable use.

The small-scale of the design allows for charging small helpful devices like flashlights, cell phones, GPS, and other such electronics. Bassett has since teamed up with like-minded young engineers and designers to create RMRD TECH, which is set “to empower people around the world to create their own electricity with elegant open source designs and 3D printing technology.” The wind turbine is the first undertaking for RMRD, and the group is aiming to have a viable system ready to launch on Kickstarter this coming spring for the Venecia turbines, named for the town where Bassett came up with the idea. Crowdfunding should enable these turbines to become truly accessible.

  Weekly Roundup: Ten 3D Printable Things – Famous Sculptures and Antiquities

When looking at the turbine design, the most striking aspect is simply their look; these don’t look like the standard turbines dotting the roadsides all around (or maybe we just have a bunch around Cleveland, and I’ve gotten used to them). The unique sail blade design enables the blades to catch whatever wind there may be, even on seemingly still days, via their vertical-axis array. The vertical-axis design also allows for the entire unit to be packed up into a compact tube, just 100 cm x 10 cm, to transport — and then requires only two minutes to set up once ready for installation on-site to produce about 5V USB power.

Importantly, Bassett’s design is sustainable. Bassett remarked that turning to 3D printing technology truly made possible the ultimate aspects of design and engineering seen in the latest iteration of the Venecia blades. By working on a trial-and-error basis, he was able to work through what designs were best, simplest, and most capable of meeting the needs at hand. 3D printing enables all these qualities to stand out at their best, and at a low cost — a primary consideration for the primarily developing world areas that would benefit most from these turbines.

The prototypes for the Venecia wind turbines have been almost entirely 3D printed. While they still require non-3D printed components like stepper motors, the large portion of 3D printing used allows for cost- and time-efficient manufacture.

Ahead of the Kickstarter campaign, which it seems may upgrade the equipment RMRD TECH has at hand, Bassett has been utilizing a PrintrBot 3D printer, which he has modified for his needs. The PrintrBot Simple Metal prints the turbine components in PLA. All this has been good enough for now, but Bassett admits that PLA, which is famously biodegradable, is not the best long-term choice for technology that might end up in a rainforest. He’s hoping to move to ABS at some point. The goal is also to keep total costs in the sub-$300 range, enhancing affordability as best possible.

  3D Printed Olli Shuttle to Be Powered by Perrone Robotics

Check out the video below where Kyle Bassett describes his project’s beginnings as well as his ideas for the Venecia wind turbines. More videos of the project’s work-to-date are available via YouTube and RMRD TECH’s Experience site.

What do you think of Bassett’s design? Let us know in the RMRD TECH  Sustainable Wind Turbine Blades forum thread over at 3DPB.com.

If you're looking to get an architectural rendering quote in the USA, our service provides a simple and efficient process to obtain the best pricing tailored to your project. Through our platform, you can easily submit your project details and receive a competitive quote from our team of experts. We offer high-quality 3D renderings for both interior and exterior designs, helping you bring your architectural visions to life with stunning precision. With our support, you can be confident in receiving professional services at affordable prices, without the hassle of dealing with multiple vendors.

Getting an accurate architectural rendering quote has never been easier. Through our portal, you’ll have direct access to a streamlined process where we guide you step by step, ensuring all your needs are met. Our 3D rendering experts work closely with you to ensure the final product matches your expectations, whether it’s for residential, commercial, or mixed-use developments. Trust our platform to provide you with the best possible rates and results, all with a quick turnaround time and exceptional customer support.

Leave a Reply