Glasgow Researchers Explore Stem Cell Engineering with Bacteria Filled Microgels

Researchers from the University of Glasgow are expanding their research into bioprinting, with their findings outlined in the recently published ‘Bacteria laden microgels as autonomous 3D environments for stem cell engineering.’ The team has developed a microfluidic system comprised of one step, allowing both stem cells and genetically engineered non-pathogenic bacteria to be contained in an alginate microgel.

While most techniques rely on droplet extrusion, here the researchers are creating a more efficient system via a one-step droplet microfluidic method. Fabrication of the pearl-lace microgels occurs at physiological pH without any sheathing material, with channel dimensions and overall design meant to avoid shear stress on the cells and encourage viability.

“The fabricated gel-construct is unique in a way that it has both compartmentalized units as in individual microcapsules as well as the connectivity found in fibrous constructs,” state the researchers. “It is also noted that the compartmentalized microunits and the link connecting them are highly tunable resulting in highly mono-dispersed pearl-lace interlinking structures.”

For this project, the researchers created an in vitro 3D model ‘for investigating the commensalism symbiosis between eukaryotic (bone marrow mesenchymal stem cells, hBM-MSC) and prokaryotic cells (engineered non-pathogenic bacteria Lactococcus lactis, L. lactis).’

While bacteria are commonly used as an affordable ‘production organism’ for proteins in bioprinting, they can also act as a mechanism for directing both cell growth and differentiation. The researchers also used a bacteriostatic antibiotic, sulfamethoxazole, to prevent growth of harmful bacteria.

Four 3D printed shapes were fabricated, including a line, triangle, square, and circle, and arrangement as follows:

  • Line – two circular discs (180-degree angle)
  • Three for triangle (60-degree internal angle)
  • Four for square (90-degree internal angle)
  • Eight for a circle-like shape (135-degree internal angle, octagon)
  Artist Jenny Filipetti Brings Together Breathing & Clay 3D Printing in “Breath Vessels”

The microfluidic systems allowed the researchers to create ‘mono-disperse’ constructs which are suitable for applications like pharmacological screenings, biological studies, and personalized medicine.

“The connectivity of pearl-lace hydrogels can provide a way of gradient studies in which the population of each cell type and so its relative density can be controlled. It can also be utilized for time-series indexing studies as well as providing a mean for a low-cost, easy to fabricate 3D bio-printing prototypes as demonstrated in this study,” concluded the researchers.

“Microgel in this study has been utilized as a proof of concept for modeling a tuneable platform in which both hydrogel acting as an ECM as well as production and release of growth factor can be both engineered at a low cost with high precision spatio-temporal control. It has been an attempt to further engineer more aspects of an in vitro system, paving the way for study of cells and their interaction with adjustable dynamic ECM-like environment with greater control. “

As the progress of bioprinting continues to take hold in global research, scientists create new bioprinting inks, 3D printed microsurfaces, progressive microfluidic techniques, and more. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Bacteria laden microgels as autonomous 3D environments for stem cell engineering]

If you're looking to get an architectural rendering quote in the USA, our service provides a simple and efficient process to obtain the best pricing tailored to your project. Through our platform, you can easily submit your project details and receive a competitive quote from our team of experts. We offer high-quality 3D renderings for both interior and exterior designs, helping you bring your architectural visions to life with stunning precision. With our support, you can be confident in receiving professional services at affordable prices, without the hassle of dealing with multiple vendors.

  Disney Researchers Use 3D Printing to Create Electrostatic Speakers In Any Shape Desired

Getting an accurate architectural rendering quote has never been easier. Through our portal, you’ll have direct access to a streamlined process where we guide you step by step, ensuring all your needs are met. Our 3D rendering experts work closely with you to ensure the final product matches your expectations, whether it’s for residential, commercial, or mixed-use developments. Trust our platform to provide you with the best possible rates and results, all with a quick turnaround time and exceptional customer support.

Leave a Reply